Science Reform Recommendations
Based on reports over the past 12 years, it is clear that students have not been achieving well in science (National Commission on Excellence in Education, 1983), advanced courses have been poorly subscribed to or not offered by many secondary schools (National Science Board, 1983; Bybee, 1993), and girls and minority students have been dropping out of the science track as early as possible (Hilton, Hsia, Solorzano, & Benton, 1989). On the instructional side of science, it has become evident that elementary teachers were not teaching science because they did not know the content nor feel secure with it as a subject area (Rutherford & Ahlgren, 1989); little instructional time in elementary schools was devoted to science (NAEP, 1988); and where science was taught, basal texts that emphasized reading and canned experiments were preferred and used over active learning (Lockwood, 1992a; 1992b).
In order to address the problems of science teaching and learning, key national groups including scientists and science educators collaborated on a set of science concepts and processes deemed essential for K-12 learners to understand and master (Rutherford & Ahlgren, 1989). Other groups such as the National Science Foundation, the National Academy of the Sciences, and the National Science Teachers Association have responded through the development of teacher enhancement programs and curriculum development recommendations. Project 2061 (1993) has published benchmarks of science literacy goals that concentrate on a common core of learning. More recently, the National Research Council (1996) has also published a set of national science standards. In this climate of education reform, the role of exemplary curriculum becomes a primary consideration in the attempt to improve both gifted and science education.
Research on Gifted Learners in Science
The research literature also contains many ideas for improving science education. The Third International Math and Science Study (TIMSS), which ranks the United States in the top half of participating nations at grades 4 and 8, suggests that more instructional time on experimental science activities would be useful, as would a focus on correcting misconceptions in science learning (U.S. Department of Education, 1996).
Moreover, opportunities for earlier access to advanced content need to be available to gifted students in science. Cross and Coleman (1992) conducted a survey of gifted high school students, finding that their major complaint about science instruction was the frustration of being held back by the pace and content of courses. In a 6-year study of middle school age gifted learners taking biology, chemistry, or physics in a 3-week summer program, these younger learners outperformed high school students taking these courses for a full academic year (Lynch, 1992). Follow-up studies documented continued success in science for these students, suggesting a need for academically advanced students to start high school science level courses earlier and be able to master them in less time. Evidence also suggests that advanced study in instructionally grouped settings based on science aptitudes promotes more learning for all students (Hacker & Rowe, 1993).
Data from several summer Governor's School programs in science have demonstrated the positive impact of such programs on students' continuing with the scientific enterprise in college (Enersen, 1994). The major impacts from the experience appeared to center around the collaborative opportunities to work with talented faculty and a highly able peer group. Such reports point to a continued need to provide and structure collaborative opportunities for these learners.
Recent work in using problem-based learning in teaching science to high ability learners at the elementary level suggests the efficacy of the approach in enhancing student and teacher motivation (VanTassel-Baska, Bass, Ries, Poland, & Avery, 1998); in improving problem-finding abilities (Gallagher, Stepien, & Rosenthal, 1992); and in promoting intra and interdisciplinary learning (Stepien, Gallagher, & Workman, 1993). Recent studies have also identified the materials that are most appropriate for use with high ability students in elementary science programs (Johnson, Boyce, & VanTassel-Baska, 1995), citing those that provide a balance of content and process considerations, including an emphasis on original student investigations, concept development, and interdisciplinary applications. Other studies suggest the importance of science mentors and more emphasis on laboratory-based science as central tenets of providing high-end learning opportunities in science at all levels.
What Should a Science Curriculum for Gifted Students Include?
At the Center for Gifted Education at the College of William and Mary, the past six years has been spent addressing issues of appropriate science curriculum and instruction for high ability students as well as melding those ideas to the template of curriculum reform for all students in science. Consequently, the elements essential for high ability learners also have saliency for other learners as well. The most important include the following elements:
What Can Teachers Do to Make These Reform Efforts Successful?
In order to ensure that science reform is successful, administrators, teachers, and parents need to consider the following approaches to help the reform effort succeed:
Conclusion
Appropriate science curriculum that promotes high quality learning is desirable for all learners. Access to such learning is mandatory for students demonstrating a strong yearning for substantive and challenging science curriculum in schools. Teachers and administrators alike need to recognize that gifted learners must be challenged in their area of greatest interest and potential expertise. The world can only benefit from motivating the future Marie Curies, Booker T. Washingtons, and Michael Faradays.
Do our classrooms contain the following elements?
Yes No
___ ___ Curriculum focuses on important concepts (e.g., systems, change, patterns, models).
___ ___ Curriculum emphasizes the research process within an integrated framework (e.g., exploring a topic,
planning how to study it and carrying out a study, judging results, and reporting).
___ ___ Curriculum focuses on substantive content.
___ ___ Instruction is inquiry-oriented, using strategies like problem-based learning and higher level
questioning.
___ ___ Instruction is activity-based, engaging students in the doing aspect of learning.
___ ___ Assessment of learning includes performance-based approaches such as use of real-world problems for
students to demonstrate understanding and transfer of key ideas and processes.
___ ___ Assessment of learning includes a portfolio of student work including individual logs, reports, and
other work.
___ ___ Students engage in planning and carrying out original research. (Teachers instruct student in
experimental design.).
___ ___ Students actively discuss real world problems and issues in relationship to societal implications.
(Teachers present issues and ask high level questions about them.).
___ ___ Students demonstrate thinking processes necessary for doing work in a given discipline; e.g.,
inference, deductive reasoning,
evaluation of arguments.. (Teachers ask higher level thinking questions in classroom discussion and
activities.).
___ ___ Curriculum materials are appropriate for high ability learners in that they reinforce Items 1-10 above.
___ ___ Curriculum materials promote student engagement in learning.
___ ___ Classroom instruction incorporates appropriate technology as a tool in learning.
___ ___ Classroom instruction attends to individual differences in rate of learning.
Bybee, R.W. (1993). Reforming science education. social perspectives and personal reflections. NY: Teachers College Press.
Cohen, D., McLaughlin, M., & Talbert, J. (1993). Teaching for understanding. San Francisco, CA:
Cross, T.L., & Coleman, L.J. (1992). Gifted high school students' advice to science teachers. Gifted Child Today, 15 (5), 25-26.
Enersen, D.L. (1994). Where are the scientists? Talent development in summer programs. Journal of Secondary Gifted Education, 5 (2), 23-26.
Gallagher, S.A., Stepien, W.J., & Rosenthal, H. (1992). The effects of problem-based learning on problem solving. Gifted Child Quarterly, 36 (4), 195-200.
Hacker, R.G., & Rowe, M.J. (1993). A study of the effects of an organization change from streamlined to mixed-ability classes upon science classroom instruction. Journal of Research in Science Teaching, 30 (3), 223-31.
Hilton, T.L., Hsia, J., Solorzano, D.G., & Benton, N.L. (1989). Persistence in science of high-ability minority students. Princeton, NJ: Educational Testing Service.
Johnson, D., Boyce, L., & VanTassel-Baska, J. (1995). Evaluating curriculum materials in scienceGifted Child Quarterly, 89 (1), 35-43.
Joyce, B., & Showers, B. (1995). Standard achievement through staff development: fundamentals of school renewal (2nd ed.). White Plains, NY: Longman Publishers.
Lockwood, A. (1992a). The de facto curriculum? Focus in Change, 6, 8-11.
Lockwood, A. (1992b). Whose knowledge do we teach? Focus in Change, 6, 3-7.
Lynch, S.J. (1992). Fast-paced high school science for the academically talented: A six-year perspective. Gifted Child Quarterly, 36 (3), 147-54.
National Assessment of Educational Progress (1988). Science learning matters. Princeton, NJ: Educational Testing Service.
National Commission on Excellence in Education (1983). National excellence. Washington, DC: U. S. Department of Education.
National Research Council (1996). National science education standards. Washington, DC: National Academy Press.
National Science Board Commission on Precollege Education in Mathematics, Science, and Technology (1983). Educating Americans for the 21st century. Washington, DC: National Science Foundation.
Project 2061, American Association for the Advancement of Science (1993). Benchmarks for science literacy. NY: Oxford University Press.
Rutherford, J., & Ahlgren, A. (1989). Science for all Americans. Washington, DC: American Association for the Advancement of Science, 42:1, 254-266.
Stepien, W.J., Gallagher, S.A., & Workman, D. (1993). Problem-based learning for traditional and interdisciplinary classroom. Journal for the Education of the Gifted, 16(4), 338-57.
U. S. Department of Education, National Center for Education Statistics (1996). Pursuing Excellence. Washington, DC: U.S. Government Printing Office. http://nces.ed.gov/timss/
VanTassel-Baska, J., Bass, G., Ries, R., Poland, D., & Avery, L. (1998). A national study of science curriculum effectiveness with high ability students. Gifted Child Quarterly, 42(4), 200-211.
VanTassel-Baska, J., Gallagher, S., Bailey, J., & Sher, B. (1993). Scientific experimentation. Gifted
Child Today, 16 (5), 42-46.
Top of Page Back to ERIC Menu Back to Hoagies' Gifted Education Page
|